nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 01, v.40 22-30
基于曲率自适应LTV-MPC的轨迹跟踪控制研究
基金项目(Foundation): 浙江省科技计划项目(2022C04023)
邮箱(Email): yangaixi@zju.edu.cn;
DOI:
摘要:

为了解决自动驾驶车辆在轨迹跟踪曲率变化时跟踪轨迹精度下降和行驶稳定性的问题,基于车辆的动力学三自由度模型建立状态空间方程,设计了一种道路曲率自适应线性时变模型预测控制(LTV-MPC)轨迹跟踪控制器。通过联合搭建Matlab/Simulink与Carsim仿真平台开展对比实验,仿真实验中首先分析对比了LTV-MPC控制器在不同的Q、R权重矩阵下跟踪精度的变化规律,随即拟合出随道路曲率变化的权重系数函数。最后经仿真实验对比分析,该曲率自适应LTV-MPC轨迹跟踪控制器相比LTV-MPC轨迹跟踪控制器,转向处平均横向跟踪误差减小30%,最大质心侧偏角减小2.9%,轨迹跟踪精度和车辆行驶稳定性提高。

Abstract:

To solve the problems of trajectory tracking accuracy degradation and driving stability of autonomous driving vehicle when the trajectory tracking curvature changes,this paper designs a road curvature-adaptive linear time-varying model predictive controller(LTV-MPC) trajectory tracking controller based on the dynamic three-degree-of-freedom model of the vehicle.By building Matlab/Simulink and Carsim co-simulation platform for experiments,the paper first analyzes and compares the LTV-MPC in the different Q and R weight matrix coefficients under the tracking accuracy of the change rule,and then fits them with the road curvature changes in the weight coefficient function.Finally,after the simulation experiment comparison and analysis,the curvatureadaptive LTV-MPC trajectory tracking controller,compared with LTV-MPC trajectory tracking controller,the lateral tracking error is reduced by 30% in average,the maximum sideslip angle is reduced by 2.9%.Thus,the trajectory tracking accuracy and vehicle driving stability are improved.

参考文献

[1]李克强.智能电动汽车的感知、决策与控制关键基础问题及对策研究[J].科技导报,2017,35(14):85-88.

[2]龚建伟,姜岩,徐威.无人驾驶车辆模型预测控制[M].北京:北京理工大学出版社,2014:5-6.

[3] STANO P,MONTANARO U,TAVERNINI D,et al.Model predictive path tracking control for automated road vehicles:A review[J].Annual Reviews in Control,2023,55(4):194-236.

[4]熊璐,杨兴,卓桂荣,等.无人驾驶车辆的运动控制发展现状综述[J].机械工程学报,2020,56(10):127-143.

[5] ROKONUZZAMAN M,MOHAJER N,NAHAVANDIS,et al.Review and performance evaluation of path tracking controllers of autonomous vehicles[J].IET Intelligent Transport Systems,2021,15(5):646-670.

[6]梁忠超,张欢,赵晶,等.基于自适应MPC的无人驾驶车辆轨迹跟踪控制[J].东北大学学报(自然科学版),2020,41(6):835-840.

[7]吴海东,司振立.基于线性矩阵不等式的智能车轨迹跟踪控制[J].浙江大学学报(工学版),2020,54(1):110-117.

[8] ROKONUZZAMAN M,MOHAJER N,NAHAVAND S.Effective adoption of vehicle models for autonomous vehicle path tracking:a switched MPC approach[J].Vehicle System Dynamics,2023,61(5):1 236-1 259.

[9]刘溯奇,王刚,安伟彪,等.基于变预测时域的电动汽车轨迹跟踪控制[J].科学技术与工程,2021,21(17):7 348-7 354.

[10] CHENG S,LI L,CHEN X,et al.Model predictivecontrol-based path tracking controller of autonomous vehicle considering parametric uncertainties and velocity-varying[J].IEEE Transactions on Industrial Electronics,2021,68(9):8 698-8 707.

[11]贺伊琳,宋若旸,马建.基于强化学习DDPG的智能车辆轨迹跟踪控制[J].中国公路学报,2021,34(11):335-348.

[12]张栩源,李军.基于LQR双PID的智能电动汽车轨迹跟踪横纵向协同控制[J].汽车安全与节能学报,2021,12(3):346-354.

[13]汤新华,成宇庆,潘树国,等.基于时滞补偿的纯追踪控制预瞄距离优化方法[J].中国惯性技术学报,2023,31(9):876-882.

[14]姜立标,吴中伟.基于趋近律滑模控制的智能车辆轨迹跟踪研究[J].农业机械学报,2018,49(3):381-386.

[15]王银,张灏琦,孙前来,等.基于自适应MPC算法的轨迹跟踪控制研究[J].计算机工程与应用,2021,57(14):251-258.

[16]庞辉,刘楠,刘敏豪,等.基于线性时变模型预测控制的自主车辆轨迹跟踪控制器设计与验证[J].机械工程学报,2022,58(24):264-274.

[17] SONG X,SHAO Y,QU Z.A vehicle trajectory tracking method with a time-varying model based on the model predictive control[J].IEEE Access,2019,8:16 573-16 583.

[18]冀杰,唐志荣,吴明阳,等.面向车道变换的路径规划及模型预测轨迹跟踪[J].中国公路学报,2018,31(4):172-179.

[19]孙银健.基于模型预测控制的无人驾驶车辆轨迹跟踪控制算法研究[D].北京:北京理工大学,2015.

[20] GUO H,CAO D,CHEN H,et al.Model predictive path following control for autonomous cars considering a measurable disturbance:Implementation,testing,and verification[J].Mechanical Systems and Signal Processing,2019,118:41-60.

[21]蔡英凤,李健,孙晓强,等.智能汽车路径跟踪混合控制策略研究[J].中国机械工程,2020,31(3):289-298.

基本信息:

DOI:

中图分类号:U463.6

引用信息:

[1]臧豫徽,杨爱喜,李兰友.基于曲率自适应LTV-MPC的轨迹跟踪控制研究[J].安徽工程大学学报,2025,40(01):22-30.

基金信息:

浙江省科技计划项目(2022C04023)

检 索 高级检索