电能质量信号压缩采样匹配跟踪算法研究Research on CoSaSAMP Algorithm for Power Quality Signal
刘传洋,孙佐,刘景景,方曙东,李春国,宋康
摘要(Abstract):
电能质量信号具有实时随机性,针对匹配跟踪算法在稀疏度未知的情况下难以精确重构电能质量信号的缺陷问题,提出了稀疏度自适应的压缩采样匹配追踪算法。引入稀疏度估计方法提前对信号的初始稀疏度进行迭代估计,利用递归思想通过残差变化动态调整稀疏度逼近信号的真实稀疏度,通过最小二乘法重构出电能质量信号最优估值。实验结果表明,在测量矩阵为二元块对角矩阵的基础上,所提出的算法与压缩采样匹配跟踪算法与自适应匹配追踪算法相比,信噪比提高了10~20 dB,具有抗干扰能力强、重构精度高的优点。
关键词(KeyWords): 电能质量;压缩采样;自适应;递归;稀疏度
基金项目(Foundation): 国家自然科学基金资助项目(NSFC61671144);; 山东省自然科学基金资助项目(ZR2017BF028);; 安徽省优秀拔尖人才基金资助项目(GXYQ2019109、GXGNFX2019056);; 池州学院研究基金资助项目(2018XJPKC12、2017XWTXM07)
作者(Author): 刘传洋,孙佐,刘景景,方曙东,李春国,宋康
参考文献(References):
- [1] 童新,卿朝进,夏凌,等.基于稀疏度特征的短时电能质量扰动信号重构方法[J].电测与仪表,2018,55(20):114-121.
- [2] 杨晓梅,罗月婉,肖先勇,等.基于自适应阈值和奇异值分解的电能质量扰动检测新方法[J].电网技术,2018,42(7):2 286-2 294.
- [3] 张新闻,周春燕,李学生.基于小波变换和优化核参数支持向量机的电能质量扰动分类[J].科学技术与工程,2010,34(10):8 439-8 444.
- [4] X DING,W CHEN,I J WASSELL.Joint sensing matrix and sparsifying dictionary optimization for tensor compressive sensing[J].IEEE Transactions on Signal Processing,2017,65(14):3 632-3 646.
- [5] R GIRYES,Y C ELDAR,A M BRONSTEIN,et al.Tradeos between convergence speed and reconstruction accuracy in inverse problems[J].IEEE Transactions on Signal Processing,2018,66(7):1 676-1 690.
- [6] E J CANDES,J K ROMBERG,T TAO.Stable signal recovery from incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006,59(8):1 207-1 223.
- [7] W DAN,Y FU.Exact support recovery via orthogonal matching pursuit from noisy measurements[J].Electronics Letters,2016,52(17):1 497-1 499.
- [8] D NEEDELL,R VERSHYNIN.Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J].IEEE Journal of Selected Topics in Signal Processing,2010,4(2):310-316.
- [9] 闫鹏,王阿川.基于压缩感知的CoSaMP算法自适应性改进[J].计算机工程,2012,39(6):28-33.
- [10] S SATPATHI,M CHAKRABORTY.On the number of iterations for convergence of CoSaMP and subspace pursuit algorithms[J].Appl Comput Harmon Anal,2017,43(3):568-576.
- [11] J WEN,Z ZHOU,J WANG,et al.A sharp condition for exact support recovery of sparse signals with orthogonal matching pursuit[C]//2016 IEEE International Symposium on Information Theory.Barcelona,Spain:IEEE,2016:2 364-2 368.
- [12] 刘国海,吴翃轩,沈跃.正则化自适应匹配追踪电能质量数据重构方法[J].仪器仪表学报,2015,36(8):1 838-1 843.
- [13] Y SHEN,G H LIU.Study on classification method of power quality disturbance based on random dimensionality reduction projection and sparse representation[J].Chinese Journal of Scientific Instrument ,2011,32(6):1 171-1 176.
- [14] 王学伟,王琳,苗桂君,等.暂态和短时电能质量扰动信号压缩采样与重构方法[J].电网技术,2012,36(3):191-196.
- [15] S CHAKRABORTY,A CHATTERJEE,S K GOSWAMI.A sparse representation based approach for recognition of power system transients[J].Engineering Applications of Artifical Intellgience,2014,30(3):137-144.
- [16] 曹思扬,戴朝华,朱云芳,等.一种新的电能质量扰动信号压缩感知识别方法[J].电力系统控制与保护,2017,45(2):7-12.
- [17] N NGUYEN,D NEEDELL,T WOOLF.Linear convergence of stochasticiterative greedy algorithmswith sparse constraints[J].IEEE Trans Inf Theory,2017,63(11):6 869-6 895.
- [18] J ZHANG,Y M SUO,S MITRA,et al.An efficient and compact compressed sensing microsystem for implantable neural recording[J].IEEE Trans.Biomed.Circuits Syst,2014,8(4):485-496.
- [19] W YAN,Q WANG,Y SHEN.Shrinkage-based alternating projection algorithm for efficient measurement matrix construction in compressive sensing[J].IEEE Trans.Instrum.Meas,2014,63(5):1 073-1 084.
- [20] M BERTOCC,G FRIGO,C NARDUZZI,et al.Resolution enhancement by compressive sensing in power quality and phasor measurement[J].IEEE Trans.Instrum.Meas,2014,63(10):2 358-2 367.